Skip to contents

Data is extracted according to the countries object in a way that is amenable to drake subtargets. dplyr::filter() does the subsetting.

Usage

extract_country_data(
  .df,
  countries,
  max_year,
  country = IEATools::iea_cols$country,
  year = IEATools::iea_cols$year
)

Arguments

.df

A data frame containing cleaned data with lots of countries.

countries

A list of 3-letter country codes for countries to be analyzed.

max_year

The latest year you want to include in the extracted data.

country, year

See IEATools::iea_cols.

Value

a data frame with the desired IEA data only

Examples

IEATools::sample_iea_data_path() %>%
  IEATools::load_tidy_iea_df() %>%
  extract_country_data(countries = c("ZAF"), max_year = 1999)
#> # A tibble: 98 × 11
#>    Country Method Energy.type Last.stage  Year Ledger.side Flow.aggregation.poi…
#>    <chr>   <chr>  <chr>       <chr>      <dbl> <chr>       <chr>                
#>  1 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  2 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  3 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  4 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  5 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  6 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  7 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  8 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#>  9 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#> 10 ZAF     PCM    E           Final       1971 Supply      Total primary energy…
#> # … with 88 more rows, and 4 more variables: Flow <chr>, Product <chr>,
#> #   Unit <chr>, E.dot <dbl>