Create non-stationary allocation graphs in a data frame
nonstat_alloc_plots_df.Rd
This function adds a column of ggplot2
graphs to a completed allocation tables data frame.
The graphs are stored in a list column named plots
.
Usage
nonstat_alloc_plots_df(
.df,
countries,
data_col = "Data",
plots = "Plots",
country = IEATools::iea_cols$country,
ef_product = IEATools::template_cols$ef_product,
destination = IEATools::template_cols$destination,
quantity = IEATools::template_cols$quantity,
c_source = IEATools::template_cols$c_source,
year = IEATools::iea_cols$year,
.values = IEATools::template_cols$.values,
machine = IEATools::template_cols$machine,
eu_product = IEATools::template_cols$eu_product
)
Arguments
- .df
The completed allocation tables data frame. Default is
drake::readd(completed_allocation_tables_target, path = cache_path, character_only = TRUE)
.- countries
The countries for which allocation plots are to be created.
- data_col
The name of the output column containing nested data for allocation graphs. Default is "Data".
- plots
The name of the output column containing allocation graphs. Default is "Plots".
- country
See
IEATools::iea_cols
.- ef_product, destination, quantity, c_source
- year
See
IEATools::iea_cols
. Passed toalloc_graph()
.- .values, machine, eu_product
See
IEATools::template_cols
. Passed toalloc_graph()
.
Details
The data frame is grouped by all variables needed to create the allocation graph, specifically
country
, ef_product
, and destination
and nested prior to making the graphs, namely
machine
, eu_product
, quantity
, year
, .values
, and c_source
,
meaning that one allocation graph is constructed for each combination of those variables.
Examples
# Make a simple data frame with the expected structure.
alloc_table <- tibble::tribble(~Country, ~Method, ~Energy.type, ~Year, ~Ef.product, ~Destination,
~.values, ~Machine, ~Quantity, ~Eu.product, ~C.source,
"GHA", "PCM", "E", 1971, "Gasoline", "Transport",
0.5, "Cars", "C_1 [%]", "MD", "World",
"GHA", "PCM", "E", 1971, "Gasoline", "Transport",
0.5, "Trucks", "C_2 [%]", "MD", "World",
"GHA", "PCM", "E", 2020, "Gasoline", "Transport",
0.2, "Cars", "C_1 [%]", "MD", "World",
"GHA", "PCM", "E", 2020, "Gasoline", "Transport",
0.8, "Trucks", "C_2 [%]", "MD", "World",
"ZAF", "PCM", "E", 1971, "Gasoline", "Transport",
0.5, "Cars", "C_1 [%]", "MD", "World",
"ZAF", "PCM", "E", 1971, "Gasoline", "Transport",
0.5, "Trucks", "C_2 [%]", "MD", "World",
"ZAF", "PCM", "E", 2020, "Gasoline", "Transport",
0.3, "Cars", "C_1 [%]", "MD", "World",
"ZAF", "PCM", "E", 2020, "Gasoline", "Transport",
0.7, "Trucks", "C_2 [%]", "MD", "World")
alloc_plots_df(alloc_table, c("GHA", "ZAF"))
#> # A tibble: 2 × 7
#> # Groups: Country, Method, Energy.type, Ef.product, Destination [2]
#> Country Method Energy.type Ef.product Destination Data Plots
#> <chr> <chr> <chr> <chr> <chr> <list> <list>
#> 1 GHA PCM E Gasoline Transport <tibble [4 × 5]> <gg>
#> 2 ZAF PCM E Gasoline Transport <tibble [4 × 5]> <gg>