Skip to contents

The efficiency pipeline calculates efficiencies for various despecifications, row aggregations, and column aggregations.

Usage

pr_in_agg_pipeline(
  .psut_data,
  product_agg_map,
  industry_agg_map,
  p_industries,
  do_chops = FALSE,
  pattern_type = "exact",
  piece = "noun",
  bracket_notation = RCLabels::bracket_notation,
  arrow_notation = RCLabels::arrow_notation,
  prepositions = RCLabels::prepositions_list,
  method = "SVD",
  tol_invert = .Machine$double.eps,
  product_type = Recca::row_col_types$product_type,
  industry_type = Recca::row_col_types$industry_type,
  R = Recca::psut_cols$R,
  U = Recca::psut_cols$U,
  V = Recca::psut_cols$V,
  Y = Recca::psut_cols$Y,
  r_eiou = Recca::psut_cols$r_eiou,
  U_eiou = Recca::psut_cols$U_eiou,
  U_feed = Recca::psut_cols$U_feed,
  S_units = Recca::psut_cols$S_units,
  .prime = "_prime",
  country = Recca::psut_cols$country,
  year = Recca::psut_cols$year,
  R_aggregated_colname = paste0(R, aggregated_suffix),
  U_aggregated_colname = paste0(U, aggregated_suffix),
  U_feed_aggregated_colname = paste0(U_feed, aggregated_suffix),
  U_eiou_aggregated_colname = paste0(U_eiou, aggregated_suffix),
  r_eiou_aggregated_colname = paste0(r_eiou, aggregated_suffix),
  V_aggregated_colname = paste0(V, aggregated_suffix),
  Y_aggregated_colname = paste0(Y, aggregated_suffix),
  S_units_aggregated_colname = paste0(S_units, aggregated_suffix),
  aggregated_suffix = Recca::aggregate_cols$aggregated_suffix,
  product_aggregation = PFUAggPipeline::aggregation_df_cols$product_aggregation,
  industry_aggregation = PFUAggPipeline::aggregation_df_cols$industry_aggregation,
  specified = PFUAggPipeline::aggregation_df_cols$specified,
  despecified = PFUAggPipeline::aggregation_df_cols$despecified,
  grouped = PFUAggPipeline::aggregation_df_cols$grouped,
  chopped_mat = PFUAggPipeline::aggregation_df_cols$chopped_mat,
  chopped_var = PFUAggPipeline::aggregation_df_cols$chopped_var,
  Y_matname = Recca::psut_cols$Y,
  R_matname = Recca::psut_cols$R,
  product_sector = PFUAggPipeline::aggregation_df_cols$product_sector,
  none = PFUAggPipeline::agg_metadata$none
)

Arguments

.psut_data

PSUT matrices in wide-by-matrix format. This could be an entire data frame, a slice (row) of the data frame, or a group of the data frame.

product_agg_map

The product aggregation map.

industry_agg_map

The industry aggregation map.

p_industries

A string vector of primary industries.

do_chops

A boolean that tells whether to do the chopping of R and Y matrices.

pattern_type

The matching type for row and column labels. Default is "exact".

piece

The piece of row and column labels to be matched. Default is "noun".

bracket_notation

A row and column notation. Default is RCLabels::bracket_notation.

arrow_notation

A row and column notation. Default is RCLabels::arrow_notation.

prepositions

Prepositions to be used in row and column labels. Default is RCLabels::prepositions_list.

method

The method for doing matrix inversion when chopping the R and Y matrices. Default is "SVD" for singular value decomposition.

tol_invert

The tolerance for nearness to 0 in matrix inversion. Default is .Machine$double.eps.

product_type, industry_type

See Recca::row_col_types.

R, U, U_feed, U_eiou, r_eiou, V, Y, S_units, country, year

The names of input columns in .psut_data. Default values are from Recca::psut_cols.

.prime

The suffix for the columns containing chopped ECC matrices. Default is "_prime".

R_aggregated_colname, U_aggregated_colname, V_aggregated_colname, Y_aggregated_colname, r_eiou_aggregated_colname, U_eiou_aggregated_colname, U_feed_aggregated_colname, S_units_aggregated_colname

The names of output aggregated columns. Defaults are the matrix names with aggregated_suffix appended.

aggregated_suffix

The suffix for aggregated column names. See Recca::aggregate_cols.

product_aggregation, industry_aggregation, specified, despecified, grouped, product_sector

See PFUAggPipeline::aggregation_df_cols.

chopped_mat, chopped_var

Column names that indicate which matrix has been chopped, R or Y. Default values are from PFUAggPipeline::aggregation_df_cols.

Y_matname, R_matname

Matrix names for the chopped_mat and chopped_var columns. Default values are from Recca::psut_cols$R and Recca::psut_cols$Y.

none

The string to specify no aggregations. Default is PFUAggPipeline::agg_metadata$none.

Value

A data frame of efficiencies for the original, despecified, and grouped versions of .psut_data.

Details

This function is an attempt to streamline the calculation pipeline by eliminating the need to repeatedly re-load intermediate targets from disk. It bundles the work of previous targets to

  • despecify and aggregate both product and industry dimensions of PSUT matrices,

  • group and aggregate products,

  • group and aggregate industries,

  • group and aggregate both products and industries,

  • calculate primary-to-final efficiencies,

  • calculate primary-to-useful efficiencies, and

  • calculate final-to-useful efficiencies.