Convert a tidy data frame to PSUT matrices
collapse_to_psut.Rd
A tidy data frame of muscle work information can be converted to
a matsindf
data frame via this function.
Usage
collapse_to_psut(
.df,
matrix_class = c("matrix", "Matrix"),
country = MWTools::mw_cols$country,
year = MWTools::mw_cols$year,
method = MWTools::mw_cols$method,
energy_type = MWTools::mw_cols$energy_type,
last_stage = MWTools::mw_cols$last_stage,
unit = MWTools::mw_cols$unit,
e_dot = MWTools::mw_cols$e_dot,
matnames = MWTools::mat_meta_cols$matnames,
matvals = MWTools::mat_meta_cols$matvals,
rownames = MWTools::mat_meta_cols$rownames,
colnames = MWTools::mat_meta_cols$colnames,
rowtypes = MWTools::mat_meta_cols$rowtypes,
coltypes = MWTools::mat_meta_cols$coltypes
)
Arguments
- .df
A data frame created by
add_row_col_meta()
so that it contains metadata columns for creating PSUT matrices.- matrix_class
The type of matrix to be created, one of "matrix" or "Matrix". Default is "matrix".
- country, year, method, energy_type, last_stage, unit, e_dot
See
MWTools::mw_cols
.- matnames, matvals, rownames, colnames, rowtypes, coltypes
Details
Prior to forming matrices, this function deletes unneeded columns (columns that are neither metadata nor energy values). It also aggregates data frame rows that will end up at the same row, column location in the matrices.
Examples
ilo_working_hours_data <- read.csv(file = MWTools::ilo_working_hours_test_data_path())
ilo_employment_data <- read.csv(file = MWTools::ilo_employment_test_data_path())
hmw_data <- prepareRawILOData(ilo_working_hours_data = ilo_working_hours_data,
ilo_employment_data = ilo_employment_data)
hmw_df <- hmw_data %>%
calc_hmw_pfu() %>%
# Keep only a few years for speed.
dplyr::filter(Year %in% 2000:2002)
amw_df <- amw_test_data_path() %>%
read.csv() %>%
calc_amw_pfu() %>%
# Keep only a few years for speed.
dplyr::filter(Year %in% 2000:2002)
specify_energy_type_method(hmw_df, amw_df) %>%
specify_product() %>%
specify_TJ() %>%
MWTools::specify_primary_production() %>%
specify_useful_products() %>%
specify_fu_machines() %>%
specify_last_stages() %>%
MWTools::add_row_col_meta() %>%
MWTools::collapse_to_psut()
#> # A tibble: 12 × 10
#> Country Year Method Energy.type Last.stage Unit R U V
#> <chr> <dbl> <chr> <chr> <chr> <chr> <list> <list> <list>
#> 1 CHNM 2000 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 2 CHNM 2000 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 3 CHNM 2001 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 4 CHNM 2001 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 5 CHNM 2002 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 6 CHNM 2002 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 7 GBR 2000 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 8 GBR 2000 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 9 GBR 2001 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 10 GBR 2001 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 11 GBR 2002 PCM E Final TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> 12 GBR 2002 PCM E Useful TJ <dbl[…]> <dbl[…]> <dbl[…]>
#> # ℹ 1 more variable: Y <list>